Stability and Bifurcation Analysis of a Viral Infection Model with Delayed Immune Response∗
نویسندگان
چکیده
In this paper, we study a viral infection model with an immunity time delay accounting for the time between the immune system touching antigenic stimulation and generating CTLs. By calculation, we derive two thresholds to determine the global dynamics of the model, i.e., the reproduction number for viral infection R0 and for CTL immune response R1. By analyzing the characteristic equation, the local stability of each feasible equilibrium is discussed. Furthermore, the existence of Hopf bifurcation at the CTL-activated infection equilibrium is also studied. By constructing suitable Lyapunov functionals, we prove that when R0 ≤ 1, the infection-free equilibrium is globally asymptotically stable; when R0 > 1 and R1 ≤ 1, the CTLinactivated infection equilibrium is globally asymptotically stable; Numerical simulation is carried out to illustrate the main results in the end.
منابع مشابه
Threshold harvesting policy and delayed ratio-dependent functional response predator-prey model
This paper deals with a delayed ratio-dependent functional response predator-prey model with a threshold harvesting policy. We study the equilibria of the system before and after the threshold. We show that the threshold harvesting can improve the undesirable behavior such as nonexistence of interior equilibria. The global analysis of the model as well as boundedness and permanence properties a...
متن کاملGlobal Stability of Delayed Viral Infection Models with Nonlinear Antibody and CTL Immune Responses and General Incidence Rate
The dynamical behaviors for a five-dimensional viral infection model with three delays which describes the interactions of antibody, cytotoxic T-lymphocyte (CTL) immune responses, and nonlinear incidence rate are investigated. The threshold values for viral infection, antibody response, CTL immune response, CTL immune competition, and antibody competition, respectively, are established. Under c...
متن کاملAnalysis of a viral infection model with immune impairment and cure rate
In this paper, the dynamics behavior of a delayed viral infection model with immune impairment and cure rate is studied. It is shown that there exists three equilibria. By analyzing the characteristic equations, the local stability of the infection-free equilibrium and the immune-exhausted equilibrium of the model are established. In the following, the stability of the positive equilibrium is s...
متن کاملCenter manifold analysis and Hopf bifurcation of within-host virus model
A mathematical model of a within-host viral infection is presented. A local stability analysis of the model is conducted in two ways. At first, the basic reproduction number of the system is calculated. It is shown that when the reproduction number falls below unity, the disease free equilibrium (DFE) is globally asymptotically stable, and when it exceeds unity, the DFE is unstable and there ex...
متن کاملThe Dynamical Analysis of a Delayed Prey-Predator Model with a Refuge-Stage Structure Prey Population
A mathematical model describing the dynamics of a delayed stage structure prey - predator system with prey refuge is considered. The existence, uniqueness and bounded- ness of the solution are discussed. All the feasibl e equilibrium points are determined. The stability analysis of them are investigated. By employ ing the time delay as the bifurcation parame...
متن کامل